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SUMMARY

The fully explicit characteristic-based split (CBS) scheme is employed to solve viscoelastic flow problems.
The upper-convected Maxwell (UCM) model is employed in the present study. In addition to allowing
equal-order interpolations for pressure and velocity, the proposed method along with an appropriate
artificial damping scheme is able to produce stable solutions for different Deborah numbers (De). The
higher-order time terms introduced by the simplified characteristic Galerkin approximation are sufficient
to obtain stable solution at very low De, but an additional damping is essential to maintain positive
definitiveness of the conformation tensor at higher De. We demonstrate the need for an additional damping
by analysing the basic forward time central space scheme applied to the constitutive equations. A second-
order artificial damping is employed to counteract the negative dissipation introduced by the explicit time
discretization. The example studied in this paper is the widely used and difficult problem of flow past
a circular cylinder. The results presented show that the velocity and extra stresses converge easily to a
steady state at lower De values. At higher De values, the convergence to steady state is slow due to the
incremental way in which the artificial damping is added. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The three major issues of current interest in the numerical modelling of viscoelastic flows are
stability, large memory overhead and accuracy. Stability and accuracy are closely linked. The
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memory overhead is the result of solving a number of extra stress component equations. The
memory overhead can be reduced via matrix-free solution methods, such as the one used in the
present study. The stability and accuracy of many numerical schemes deteriorate as the mesh is
refined and the elasticity of the fluid is increased. There are a number of differential-type models
available for representing a wide spectrum of viscoelastic fluids. Among the available models,
the Oldroyd-B and upper-convected Maxwell (UCM) models are commonly employed and other
models such as PTT and Giesekus are gaining popularity. In our previous publications [1, 2],
we demonstrated how a matrix-free, artificial-compressibility-based fractional step method can be
used to reduce some of the stability problems in using Oldroyd-B model. In addition to reducing
instability, we have also demonstrated an improved accuracy of drag prediction by adding artificial
damping [2]. A consistent second-order dissipation was used to maintain the positive definitiveness
of the conformation tensor up to a Deborah number (De) of 2, although steady-state solution was
obtained beyond De=2. In the present work, we have extended the artificial-compressibility-based
fractional step method to solve the more challenging UCM fluid model.

Owing to the lack of diffusion terms in the momentum equation, the UCM model is known
to introduce severe stability problems as De is increased [3–7]. Many of the studies reported use
structured meshes. In the present work, we have employed three fully unstructured meshes and
one hybrid mesh to solve the UCM model for flow past a circular cylinder. However, one of the
major objectives in viscoelastic flow calculations is to obtain accurate solutions at as high De as
possible. Thus, any attempt that helps to push the De limit further on the fine meshes, without
loosing positive definitiveness, should be investigated.

The method based on matrix-logarithm of conformation tensor for transforming constitutive
equations has been recently proposed by Fattal and Kupferman [8]. The objective of this method is
to design an algorithm that retains positive definitiveness of the conformation tensor and removes
the growth of exponential stress profiles at higher Weissenberg numbers. Such a scheme was
implemented using the finite element method by Hulsen [9] for viscoelastic flow past a confined
circular cylinder using the Oldroyd-B model. Hulsen [9] introduced an extra differential equation
to produce a symmetric matrix in the discrete elastic viscous split stress (DEVSS) formulation.
An alternative form of logarithm-based method for solving all the governing equations was imple-
mented with DEVSS-TG/SUPG up to a Deborah number of 0.7 [10]. Although the positive
definiteness is guaranteed, the accuracy is not always assured [10]. In addition to extra variables,
the matrix-logarithm-based method has been demonstrated only on the structured meshes. In the
present study, the focus is either unstructured or hybrid mesh.

The stabilization proposed here is different from the classical methods such as SUPG
[3, 4, 11, 12] and GLS [5, 13–16]. We use the time-stepping-based stabilization to reduce
oscillations due to the Galerkin discretization of first-order terms [17–19]. In addition, we
also employ a fractional step to reduce pressure instability (LBB condition) and an artificial
compressibility scheme to keep the scheme matrix free [20–26]. This method is referred to
as the characteristic-based split (CBS) method and it was employed to tackle Oldroyd-B fluid
in References [1, 2].

Although the CBS scheme is conditionally stable for Newtonian fluids [19], the same conditional
stability is not valid for differential equations governing the extra stresses of the viscoelastic fluids.
This is demonstrated by analysing a simple time discretization of the constitutive equations later.
Although the characteristic Galerkin (CG) scheme neutralizes some of the opposite stabilization
terms, the simple time discretization used here retains some other negative diffusion terms. To
counteract these negative diffusion terms, we may need additional dissipation. We have introduced
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VISCOELASTIC FLOW 1173

a second-order, positive, additional damping to reduce the influence of these negative diffusion
terms [1, 27–30].

In summary, the objective of the present work is to model UCM fluid past a circular cylinder
using the CBS scheme and a novel artificial damping method. Section 2 summarizes the governing
equations for the UCM model. In Section 3, the CBS scheme, the forward time central space
(FTCS) scheme and the artificial dissipation (AD) method are discussed. Numerical solutions
obtained for different De’s are given in Section 4. Some conclusions are derived in Section 5.

2. MATHEMATICAL FORMULATIONS

The non-dimensional, isothermal equations for viscoelastic flows can be expressed as
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in which the Newtonian deviatoric stress tensor can be expressed as
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and the non-Newtonian deviatoric stress tensor (�pi j =�ei j +�v
i j ), which is given by the constitutive

equation of extra stress for polymer contribution, can be expressed as

�ei j =−De

[
��pi j
�t

+ �
�xk

(uk�
p
i j )−�pik

�u j

�xk
−�pjk

�ui
�xk

]
(4)

and

�v
i j =�

(
�ui
�x j

+ �u j

�xi
− 2

3

�uk
�xk

�i j

)
(5)

In the above governing equations, p is the pressure, � is the density, u j are the velocity components,
�i j is the Kronecker delta, �ei j is the polymer-contributed elastic stress, �v

i j is the polymer-contributed
viscous stress, �=�m0/�0 in which �m0 represents the polymer-contributed viscosity and �0 repre-
sents the zero shear rate viscosity, Re is the Reynolds number and De is the Deborah number
defined as

Re= �∞u∞L

�0
, De= �u∞

L
(6)
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where subscript ∞ indicates a free stream value, L is a characteristic length indicating the radius of
a circular cylinder, � is the relaxation time and �0=�n+�m0 in which �n represents the Newtonian
dynamic viscosity. In Equation (4), when 0<�<1, the constitutive equation describes the Oldroyd-B
model and the UCM model is obtained when �=1.

3. NUMERICAL FORMULATIONS

3.1. CBS scheme

The CBS scheme is based on the simplified CG procedure and a fractional step method [17–19].
In this paper, a fully explicit CBS form [1, 2, 20, 21] has been employed to solve Maxwell fluid
flow past a circular cylinder. Following the intermediate momentum at the first step, the pressure is
calculated from the modified mass conservation at step 2. The velocity field is corrected at step 3.
Finally, the discretized constitutive equations are solved with CG stabilization terms at the fourth
step. The first three steps are standard and are available in previously published articles [18, 20–26].
Only the discrete forms of the constitutive equation are discussed here. The semi-discrete form of
step 4 is

��pi j = �pi j
n+1−�pi j

n

= �t

[
− �

�xk
(uk�

p
i j )−

�pi j
De

]n

+�t

[
�pik

�u j

�xk
+�pjk

�ui
�xk

+ �

De

(
�ui
�x j

+ �u j

�xi
− 2

3

�uk
�uk

�i j

)]n

+ (�t)2

2

{
um

�
�xm

[
�

�xk
(uk�

p
i j )+

�pi j
De

]}n

+ (�t)2

2

{
um

�
�xm

[
−
(

�pik
�u j

�xk
+�pjk

�ui
�xk

)]}n

+ (�t)2

2

{
um

�
�xm

[
− �

De

(
�ui
�x j

+ �u j

�xi
− 2

3

�uk
�uk

�i j

)]}n
(7)

In the above equation, the higher-order terms act as a convection-stabilizing mechanism. The
CG procedure gives the positive diffusion, which may be expressed in compact form as
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where the time rate of increasing extra stress is
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and for the two-dimensional viscoelastic flow problems, we have this in detailed form for each
component of the constitutive equation as
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Applying the standard Galerkin approximation to the semi-discrete form of the equation
(Equation 7), the final matrix form of the constitutive equations is obtained as

��̃p =−M�p
−1�t[(C�p �̃p+K�p �̃p−D�p )−�t (Ks�̃p+Ts�̃p−Ds)]n (11)

where the extra stress variables are approximated using same-order interpolation functions as
velocity and pressure. In the present study, we use linear triangular elements for the spatial
discretization of all variables. The matrices in Equation (11) are given as
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3.2. FTCS scheme

As the constitutive equations are substantially different from standard convection equations,
explaining the negative diffusion generated may be easier using the FTCS scheme. To demon-
strate the negative diffusion, the one-dimensional constitutive equation is discretized using the
finite-difference-based FTCS scheme as
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Substituting the Taylor series expansion into Equation (13), we recover the differential form
along with the following negative diffusion terms:
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Neglecting the third- and higher-order terms and generalizing to multi-dimensions, we obtain
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For the two-dimensional problems, each component of approximate, negative diffusion may be
expressed as (assuming a steady velocity field)
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Equations (16)–(18) show clearly that the first two terms of the negative diffusion are equal
and opposite to the positive diffusion of the CG method as given in Equation (10). Thus, the
CG method is expected to eliminate these two terms. However, the remainder of the negative
diffusion terms are retained within the method. A careful investigation of these extra terms shows
that some of them are zero (e.g. divergence-free velocity) and others are the function of De. This
and our previous experiences with the Oldroyd-B model [2] show that inaccuracy and instability
builds up as De increases. This effect of the negative diffusion may be reduced by employing two
different approaches. The first is to add a positive diffusion exactly equal to the negative diffusion,
which is retained by the scheme. Although sensible, this approach is extremely expensive due to
the addition of many extra terms. The second approach is to add a consistent artificial damping
term to the discrete constitutive equations to counteract the negative diffusion. This is a much
cheaper approach than the former approach and is thus adopted in the present work. The following
subsection gives two artificial damping options.

3.3. AD method

It is well known that, in many situations, adding AD to a scheme can effectively damp the unstable
phenomenon and smooth numerical results without destroying the accuracy. In this paper, artificial
damping is added to the discrete constitutive equation (Equation (11)). Here, two different methods
are proposed. The first dissipation method is based on the difference between consistent and
lumped mass matrices, an approximation for second derivatives of the extra stress components
[1, 27–30], i.e.

�
�x j
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��pi j
�x j

)
xi ≈M�p

−1(M�p −M�p L)�̃p (19)

With the addition of this artificial damping, the smoothed extra stress equation becomes

��̃p
r
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−1CeSe
�t

(M�p −M�p L)�̃p
n

(20)

where subscript r indicates a smoothed solution, M is the mass matrix, subscript L indicates
a lumped mass matrix and Se is an elementally averaged switch of nodal pressure values,
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given as

Si =
∑n

1(pi − pk)∑n
1 pi − pk

(21)

where n is the number of nodes connected to i . In Equation (20), Ce is an artificial damping constant
that should be carefully chosen to add an optimal amount of damping, sufficient to eliminate all
negative eigenvalues of the conformation matrix within the flow domain. Equation (20) can also
be visibly consistent with the original discretization of constitutive equation as the mesh is refined,
which means that the element size h in Equation (19) tends to zero.

An alternative method [30] is to directly estimate the second derivative of extra stresses using
the post-processed second derivatives of the extra stress components. The smoothed extra stress
equation with this second option is

��̃p
r
=��̃p+�tM�p

−1Ceh
3 |u|+�

p̄
|∇2 p|eH�p �̃p

n
(22)

where p̄ is the average pressure, h is the local element size, � is the artificial wave speed and

H�p =−
∫

�
(∇N�p )

T∇N�p d� (23)

In Equation (22), the second derivative of the extra stress is calculated at nodes using a post-
processing approach and the mean values are then calculated over each element [19]. In the present
study, we present only the numerical results obtained from using the first artificial damping method
due to its simplicity and cost effectiveness.

4. NUMERICAL EXAMPLE

4.1. Domain and boundary conditions

As shown in Figure 1, a circular cylinder with radius R is placed into a rectangular channel at
a distance 12R from the inlet. The channel is 28R long and the distance from the centre of the
cylinder to the channel walls is 2R. The total height of the channel is 4R.

Three unstructured meshes and one hybrid mesh are generated with fine elements close to the
cylinder surface. Typical element sizes on the cylinder surface are 0.10924, 0.05474, 0.00633 and
0.001, respectively, for the four different meshes generated. The hybrid mesh is automatically
generated by growing normals on the cylinder surface. The surface normals are used as guides to
place structured layers close to the cylinder surface [31]. The meshes in the vicinity of the cylinder
are shown in Figure 2(a)–(d). Figure 3(a) and (b) shows two full grids (second and fourth grids)
used in the study. From now onwards, we refer to the unstructured meshes as A, B and C with the
finest being C and the coarsest being A. We refer to the fourth as mesh HD (hybrid Delaunay).

At the inlet and exit of the channel, parabolic velocity profiles are assumed, i.e.

u1=1.5

(
1− x22

4

)
(24)

u2=0 (25)
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x 1

ex

Figure 1. Viscoelastic flow past a circular cylinder placed in a channel.

Consistent with the velocity boundary conditions, the steady distribution of extra stresses at the
inlet section is assumed. The stress components are found by analytically solving the constitutive
equations at the inlet. The non-dimensional form of the stress distribution at the inlet is given as

�p11=2�De

(
�u1
�x2

)2

(26)

�p12=�
�u1
�x2

(27)

�p22=0 (28)

On the channel solid walls and cylinder surface, no slip conditions are assumed. No extra stress
conditions are applied on channel walls and the cylinder surface. Both the viscoelastic fluid models
are solved without the convection terms in the momentum equation.

4.2. Steady-state convergence criterion

The steady-state convergence criterion is fixed based on the normalized L2 norm of the residual
of the equations. It is given as

‖e‖�
2 = [∑m

i=1(‖/‖n+1
i −‖/‖ni )2]1/2

[∑m
i=1(‖/‖n+1

i )2]1/2 (29)

where m is the number of nodes in the mesh, � indicates the second-order extra stress and velocity
components. The above tolerance was reduced to a value of at least 10−7.

Some sample steady-state convergence histories of the UCMmodel results are shown in Figure 4.
Figure 4(a) and (b) shows the convergence histories at De=0.1 using mesh A. Figure 4(c) and (d)
shows the convergence histories at De=0.5 using mesh B. As seen, at De=0.1, mesh A converged
quickly to steady state. However, mesh B at De=0.5 took substantially more number of time steps
to reach steady state. To accelerate the solution to steady state, we use local time stepping methods
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Figure 2. Viscoelastic fluid flow past a circular cylinder. (a) Mesh A (nodes: 13 977; elements: 27 267;
�d=0.10924); (b) mesh B (nodes: 16 690; elements: 32 617; �d=0.05474); (c) mesh C (nodes: 33 189;
elements: 64 759; �d=0.00633); and (d) hybrid mesh HD (nodes: 35 506; elements: 69 918; �d=0.001).

Figure 3. Viscoelastic flow past a circular cylinder. (a) Mesh B and (b) mesh HD.
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Figure 4. Convergence history of the UCM model, Re=0.0.

[1, 2]. At De=0.1, the calculation took about 15min to reach steady state on mesh A and took
about 30min on mesh HD using a standard PC (Intel Pentium 4 CPU 3.00GHz and 1.00GB of
RAM 2.99GHz). At highest De, for which the results are given, the calculation took about two
days. This is due to the incremental variation of artificial damping introduced into the algorithm.
We simply stopped calculations if a De value took substantially more time than two days.

4.3. Results

To maintain accuracy of the solution, the positive definiteness of the conformation matrix must
be maintained throughout the computational field. The positive definiteness of the conformation
matrix is also very important for the stability. This is done by making sure that the eigenvalues
of the conformation tensor of additional stress are positive [32, 33]. The conformation tensor is
given as

�Ai j =�pi j +(�/De)�i j (30)

Figure 5 shows eigenvalue contours of the additional stress tensors for the UCM model at
De=0.7 using mesh HD. As seen, the additional dissipation has not only eliminated negative
eigenvalues but also is crucial in obtaining a smooth solution.
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(a)

(b)

Figure 5. Eigenvalue distribution for the UCM model at De=0.7, Re=0.0 (mesh HD). (a) �1 contours:
�1min =1.432, �1max =51.198 and (b) �2 contours: �2min =0.006, �2max =3.817.

The drag force around the circular cylinder per unit length is calculated in non-dimensional
form as

D=
∫ 2	

0
[(−p+�n11+�p11)cos
+(�n12+�p12)sin
]R d
 (31)

In the above equation, both the Newtonian viscous stress components �n11 and �n12 are zero for
the Maxwell fluid employed.

The UCM model is obtained by choosing �=1 in the constitutive equations. In all the cases
presented, both in this and the following subsections, the steady-state solutions are first obtained
without adding artificial damping. We then calculate the eigenvalues at all nodes of the domain. If
we find any negative eigenvalue, we add additional damping and converge the solution to steady
state. We incrementally increase the additional damping until all the negative eigenvalues are
eliminated from the domain.

Figure 6(a) shows the mesh convergence studies carried out using all the four meshes. As seen,
we were able to get good mesh convergence up to a Deborah number (De) of 0.7. Beyond this value,
meshes C and HD took much longer to eliminate negative eigenvalues of the conformation tensor.
Thus, we stopped calculations when the time needed for reaching steady state is substantially more
than two days.

Figure 6(b) shows the total drag force distribution with respect to De. Both meshes A and B
are easy to handle up to De=0.6 due to a small number of negative eigenvalues appearing in
the flow domain without the addition of the artificial damping. Eliminating the small number of
negative eigenvalues is relatively easier compared with several hundreds of negative eigenvalues in
the field. Beyond De=0.6, the drag force produced by mesh A shows an upward trend. This may
be the result of additional drag introduced by the artificial damping. When the element sizes are
large, it is difficult to control the artificial damping. Larger element sizes, in general, mean larger
artificial damping. This is the reason why the drag force produced by mesh A is deviating from
its expected path. This shows that although the conformation matrix remains positive definite, the
drag force is not necessarily accurate for a given mesh. Mesh B, on the other hand, only shows
the effect of extra drag introduced to a much lesser extent. The drag force produced by mesh HD
shows a consistent trend in line with other fine mesh results [5, 7]. At De=0.7, mesh HD needed
elimination of 335 negative eigenvalues around the cylinder. An AD constant value of Ce=0.064
is needed to make sure that all negative eigenvalues are removed. Beyond De=0.7 the solution on
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Figure 6. Mesh convergence and drag force distribution for the UCM model. (a) Mesh
convergence and (b) drag force distribution.

mesh HD is extremely slow to reach steady state. To eliminate hundreds of negative eigenvalues
without jeopardizing the accuracy, we may need several incremental variations in the artificial
damping constant. Although, in principle, this is possible, the cost of computation will be very
high with an explicit scheme. It may be faster to get a solution on mesh HD with an implicit time
discretization.

Table I provides a detailed comparison between the drag forces predicted using the CBS method
and the other available methods. It appears that the CBS method closely agrees with the other
methods.

To estimate the impact of the artificial damping on the results, we have plotted the extra stress
�p11 variation with and without artificial damping over the cylinder surface and along the mid-
horizontal line in Figure 7. The unstructured mesh A and a Deborah number of 0.3 are used for
the comparison. As seen, steep changes in the stress are noted on the surface. The difference in
the peak values of the stress with and without damping is apparent. The artificial damping clearly
reduces the peak value. However, if the artificial damping is not used, the positive definiteness is
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Table I. Drag force calculated by the fully explicit CBS scheme for Maxwell
fluid flow past a circular cylinder.

Alves et al.
Fan et al. M120

De Mesh A Mesh B Mesh C Mesh HD DEVSS SMART

0.0 128.682 130.479 132.060 132.220 132.36 132.369
0.01 130.694 131.646 132.058 132.105 132.251
0.025 131.945
0.05 129.505 130.324 130.798 130.993 130.912
0.1 125.832 126.703 127.327 127.386 127.42 127.356
0.2 114.924 116.628 117.419 117.83 117.767
0.3 103.217 106.874 108.428 108.68 108.614
0.4 95.345 98.881 100.828 101.074 101.43 101.361
0.5 90.448 93.597 96.567 96.11 96.037
0.6 88.895 92.669 94.182 92.37 92.298
0.7 90.530 90.870 91.751 89.84 89.774
0.8 94.393 90.432 88.18 88.178
0.9 89.931 87.218
1.0 89.640
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Figure 7. Extra stress �p11 distribution over the cylinder and along the mid-vertical centerline, De=0.3
(mesh A). Comparison between the distributions with and without artificial damping.

not guaranteed. As given, there are four negative eigenvalues without damping (Ce=0). However,
when a small amount of artificial damping is added (Ce=5.5×10−3), the negative eigenvalues
disappear. It is also obvious that the influence of artificial damping on the stress value in the wake
is negligibly small.

Figure 8 shows the extra stress �p11 distribution over the cylinder and along the mid-horizontal
line for different Deborah numbers using the hybrid mesh HD. The artificial damping is essential
to eliminate negative eigenvalues beyond a Deborah number of 0.2. The stress profiles are much
smoother than the ones obtained on Mesh A, demonstrating that the finer mesh produces a better
solution. It is also noted that the peak value on the cylinder surface starts going down beyond
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Figure 8. Extra stress �p11 distribution over the cylinder and along the mid-vertical centerline
for different Deborah numbers (mesh HD).

a Deborah number value of 0.5. This could be the effect of artificial damping. As the Deborah
number increases, the demand for artificial damping also increases. The lower peak may be the
result of controlled but incorrect artificial damping. Further theoretical research may be necessary
to determine an optimal value of damping. A peak value change similar to the one on the cylinder
surface is also noted in the wake. However, the peak value here goes down only beyond a Deborah
number value of 0.6.

Often it is essential to check the qualitative results to make sure that the solution is smooth.
In Figure 9 we show contours of the first normal stress difference N1=�p11−�p22 and the two
components of the extra stresses at De=0.7. Mesh HD was used here to make sure that the
solution is as accurate as possible. As seen the solution shows no unphysical oscillations in any
part of the domain.

5. CONCLUSIONS

In this paper the UCM model was studied using the fully explicit CBS scheme to solve viscoelastic
flow over a stationary circular cylinder placed in a rectangular channel. An additional AD method
was introduced into the discrete constitutive equations to counteract the negative dissipation. The
artificial damping was essential in removing negative eigenvalues of the conformation matrix
from the flow domain but AD is not always essential to reach steady state. The results were in
close agreement with the published results at lower De, and at higher De values the deviation
is small. In addition to demonstrating that the CBS scheme along with an artificial damping can
be an alternative method to solve UCM equations, we have also demonstrated that the De limit
can be further enhanced with the expense of substantially more computational time. However, a
better way of carrying out higher De calculations may be via implicit treatment of the constitutive
equations using appropriate methods. Implicit matrix-free methods such as GMRES may offer a
faster option to solve the constitutive equations. Irrespective of the methods used, the artificial
damping introduced will be useful in retaining the positive definitiveness of the problem.
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(a)

(b)

(c)

Figure 9. Maxwell fluid flow past a circular cylinder at De=0.7, Re=0.0 (mesh HD). (a) N1
contours: N1min =−12.458, N1max =48.517; (b) �p11 contours: �p11min

=−0.962, �p11max
=48.416;

and (c) �p12 contours: �p12min
=−17.897, �p12max

=17.962.
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